Deviation from proportionality and Lorenz-domination for claims problems
نویسندگان
چکیده
Abstract The Lorenz order is commonly used to compare rules for claims problems. In this paper, we incorporate the average of awards rule, mean value set vectors a problem, ranking standard by proving some properties that are satisfied rule. We define pair coefficients, inspired Gini index, aimed at measuring, any given discrepancy between assigned rule and proportional division. generalize proportionality deviation indices introducing coefficients measure selected two division rules. show how these related order.
منابع مشابه
A Proportionality Principle for Partitioning Problems
In a general class of measure-partitioning or fair-division problems, the extremal case occurs when the measures are proportional. Applications are given to classical and recent fair-division problems, and to statistical decision theory, mathematical physics, Banach space theory, and inequalities for continuous random variables.
متن کاملglobal results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
Extremal Problems for Roman Domination
A Roman dominating function of a graph G is a labeling f : V (G) → {0, 1, 2} such that every vertex with label 0 has a neighbor with label 2. The Roman domination number γR(G) of G is the minimum of ∑ v∈V (G) f(v) over such functions. Let G be a connected n-vertex graph. We prove that γR(G) ≤ 4n/5, and we characterize the graphs achieving equality. We obtain sharp upper and lower bounds for γR(...
متن کاملExtremal Problems for Game Domination Number
In the domination game on a graph G, two players called Dominator and Staller alternately select vertices of G. Each vertex chosen must strictly increase the number of vertices dominated; the game ends when the chosen set becomes a dominating set of G. Dominator aims to minimize the size of the resulting dominating set, while Staller aims to maximize it. When both players play optimally, the si...
متن کاملThe Domination Heuristic for LP-type Problems
Certain geometric optimization problems, for example finding the smallest enclosing ellipse of a set of points, can be solved in linear time by simple randomized (or complicated deterministic) combinatorial algorithms. In practice, these algorithms are enhanced or replaced with heuristic variants that are faster but do not come with a theoretical runtime guarantee. In this paper, we introduce a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Review of Economic Design
سال: 2022
ISSN: ['1434-4742', '1434-4750']
DOI: https://doi.org/10.1007/s10058-022-00300-y